--- title: "G&T-seq Mouse Embryo (8-cell stage)" date: "`r BiocStyle::doc_date()`" vignette: | %\VignetteIndexEntry{GT-seq Mouse Embryo} %\VignetteEngine{knitr::rmarkdown} %\VignetteEncoding{UTF-8} output: BiocStyle::html_document: toc_float: true package: SingleCellMultiModal bibliography: ../inst/REFERENCES.bib --- # Installation ```{r,eval=FALSE} if (!requireNamespace("BiocManager", quietly = TRUE)) install.packages("BiocManager") BiocManager::install("SingleCellMultiModal") ``` ## Load ```{r,include=TRUE,results="hide",message=FALSE,warning=FALSE} library(SingleCellMultiModal) library(MultiAssayExperiment) ``` # G&T-seq: parallel sequencing data of single-cell genomes and transcriptomes G&T-seq is a combination of Picoplex amplified gDNA sequencing (genome) and SMARTSeq2 amplified cDNA sequencing (transcriptome) of the same cell. For more information, see @Macaulay2015. ## Downloading datasets The user can see the available dataset by using the default options ```{r} GTseq("mouse_embryo_8_cell", mode = "*", dry.run = TRUE) ``` Or by simply running: ```{r} GTseq() ``` ## Obtaining the data To obtain the actual datasets: ```{r,message=FALSE} gts <- GTseq(dry.run = FALSE) gts ``` ## Exploring the data structure Check available metadata for each of the 112 mouse embryo cells assayed by G&T-seq: ```{r} colData(gts) ``` Take a peek at the `sampleMap`: ```{r} sampleMap(gts) ``` ## Copy numbers To access the integer copy numbers as detected from scDNA-seq: ```{r} head(assay(gts, "genomic"))[, 1:4] ``` ## RNA-seq To access raw read counts as quantified from scRNA-seq: ```{r} head(assay(gts, "transcriptomic"))[, 1:4] ``` For protocol information, see @Macaulay2016. # sessionInfo ```{r} sessionInfo() ``` # References